Performance Analysis of Naive Bayes Algorithm in Categorical Data Classification Prediction of Tennis Playing Decisions Based on Weather
Keywords:
Classification, Naive Bayes, Data Mining, RapidMiner, Weather PredictionAbstract
Decision-making based on weather factors is often subjective and inconsistent. This research applies data mining classification methods to build an objective predictive model regarding the decision to play tennis based on weather conditions. The objective of this study is to analyze the performance of the Naive Bayes algorithm in predicting this decision. The methodology involves applying the Naive Bayes algorithm to the classic "Play Tennis" dataset, which consists of 14 instances with four categorical predictor attributes: outlook, temperature, humidity, and wind. The modeling and evaluation process was conducted visually using the Altair AI Studio (RapidMiner) platform, employing the cross-validation technique to test model stability. The test results show an average model accuracy of 57.14%. A deeper analysis of the confusion matrix reveals that the model has a strong bias towards predicting the 'Yes' class, yet is very weak in identifying the 'No' class (20.00% recall). Specifically, the model exhibits a high number of False Positive errors, where 4 out of 5 'No' cases were misclassified. In conclusion, the Naive Bayes model in its current configuration is not yet fully reliable for practical application due to its biased performance. This study recommends further optimization, such as applying data balancing techniques or using more complex alternative algorithms, to significantly improve predictive performance.
References
Amalia, A., Irma Ade Irma Purnamasari, A., & Ali, I. (2024). IMPLEMENTASI ALGORITMA C4.5 DAN NAÏVE BAYES DALAM PENGAMBILAN KEPUTUSAN UNTUK PROGRAM INDONESIA PINTAR (PIP) DI SEKOLAH DASAR NEGERI 04 MAJALANGU. In Jurnal Mahasiswa Teknik Informatika (Vol. 8, Issue 2).
Arrosyid, H. H., Pratama, Z., & Priambodo, G. (2025). Penurunan Cancellation Rate Pada City Hotel Menggunakan Metode Issue Tree. In Jurnal Komputasi dan Pengembangan Aplikasi) (Vol. 1, Issue 1). https://journals.arces.org/jukompak/
Bima, L., & Prasetya, A. (2025). Computer Based Information System Journal CLUSTERING DALAM MENENTUKAN TINDAK LANJUT HASIL ANNUAL CHECK MENTAL HEALTH DENGAN ALGORITMA K-MEANS. CBIS JOURNAL, 13(01).
http://ejournal.upbatam.ac.id/index.php/cbishttp://ejournal.upbatam.ac.id/index.php/cbis
Darmawan, G., Alam, S., Imam Sulistyo, M., Studi Teknik Informatika, P., Tinggi Teknologi Wastukancana Purwakarta, S., & Artikel, R. (2023). ANALISIS SENTIMEN BERDASARKAN ULASAN PENGGUNA APLIKASI MYPERTAMINA PADA GOOGLE PLAYSTORE MENGGUNAKAN METODE NAÏVE BAYES INFO ARTIKEL ABSTRAK. 2(3), 100–108. https://doi.org/10.55123
Hidayat, T., Siddiq, M. J., Jayasri, S., Suhendi, A., & Rizky, R. (2025). ANALISIS SENTIMEN OPINI MASYARAKAT TERHADAP PILKADA 2024 DI MEDIA SOSIAL TWITTER MENGGUNAKAN ALGORITMA NAÏVE BAYES. Jurnal Informatika Dan Teknik Elektro Terapan, 13(2). https://doi.org/10.23960/jitet.v13i2.6280
Hidayatullah, H., & Umaidah, Y. (2023). PENERAPAN NAÏVE BAYES DENGAN OPTIMASI INFORMATION GAIN DAN SMOTE UNTUK ANALISIS SENTIMEN PENGGUNA APLIKASI CHATGPT. In Jurnal Mahasiswa Teknik Informatika (Vol. 7, Issue 3).
Nurrochmah, D. S., Rahaningsih, N., Dana, R. D., & Rohmat, C. L. (2025). Jurnal Informatika Terpadu PENERAPAN ALGORITMA NAIVE BAYES DALAM ANALISIS SENTIMEN ULASAN APLIKASI KITALULUS DI GOOGLE PLAY STORE. Jurnal Informatika Terpadu, 11(1), 1–11. https://journal.nurulfikri.ac.id/index.php/JIT
Retnosari, R. (2021). ANALISIS KELAYAKAN KREDIT USAHA MIKRO BERJALAN PADA PERBANKAN DENGAN METODE NAIVE BAYES.
Sucahyo, N., Kurniati, I., Harvit, K., Studi, P., Informasi, S., Teknologi, F., & Jakarta, S. (2022). SWADHARMA (JRIS) ANALISIS SENTIMEN MASYARAKAT TERHADAP UU CIPTA KERJA PADA MEDIA SOSIAL TWITTER.
Undamayanti, E., Iman Hermanto, T., Kaniawulan, I., Studi, P., Informatika, T., Teknologi, S. T., & Purwakarta, W. (2022). Analisis Sentimen Menggunakan Metode Naive Bayes Berbasis Particle Swarm Optimization Terhadap Pelaksanaan Program Merdeka Belajar Kampus Merdeka. In Jurnal Sains Komputer & Informatika (J-SAKTI (Vol. 6, Issue 2).
Wijaya, Y. F., & Triayudi, A. (2023). Perbandingan Algoritma Klasifikasi Data Mining Pada Prediksi Penyakit Diabetes. Journal of Computer System and Informatics (JoSYC), 5(1), 165–174. https://doi.org/10.47065/josyc.v5i1.4614
Downloads
Published
Data Availability Statement
The dataset analyzed in this study, "Play Tennis", is publicly available and can be accessed through the Kaggle platform at the following link: https://www.kaggle.com/datasets/fredericobreno/play-tennis
Issue
Section
License
Copyright (c) 2025 Feriandri Lesmana, Athila Defian Rizkimu, Muhamad Ridwan Nurrulloh, Maulana Farras Fathurrahman, Abdul Habib Hasibuan, Maulana Fansyuri (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
Creative Commons Attribution 4.0 International (CC BY 4.0).