Application of K-Means Clustering Method Using RapidMiner for Student Achievement Classification in Private Schools
Keywords:
K-Means Clustering, RapidMiner, academic achievement, student clustering, educational strategyAbstract
This study discusses the application of the K-Means Clustering algorithm in grouping the level of academic achievement of students in private schools with the help of RapidMiner software. The data analyzed include assignment scores, midterm exams, final exams, and attendance. The K-Means algorithm was chosen because of its ability to group unlabeled numeric data and recognize hidden patterns in the dataset. The analysis was carried out on data from 5,000 students obtained through the Kaggle platform. The clustering results produced two main groups, namely students with high academic achievement and students with lower achievements. This process allows schools to understand the characteristics of each group of students and develop more effective coaching strategies and educational policies. The use of RapidMiner has been proven to help the data analysis process efficiently and intuitively, without the need for advanced programming skills.
References
Ardiansyah, M., Nugroho, D., & Putri, A. (2021). Analisis Clustering untuk Pengelompokan Data Akademik Siswa Menggunakan K‑Means. Jurnal Teknologi dan Informatika, 12(2), 75–82.
Handayani, R., Widodo, A., & Suryani, N. (2021). Klasifikasi Prestasi Belajar Siswa Menggunakan Metode Data Mining. Jurnal Teknologi Informasi dan Pendidikan, 14(1), 50–56.
Kaggle. (2023). Students Grading Dataset. Retrieved from https://www.kaggle.com/students-grading-dataset
Putra, Y. D., & Lestari, M. (2021). Penerapan Data Mining dalam Dunia Pendidikan untuk Meningkatkan Kualitas Pembelajaran. Jurnal Ilmu Komputer dan Informatika, 10(3), 98–105.
Rahmawati, D., & Yuliana, R. (2021). Pengelompokan Prestasi Akademik Siswa Menggunakan Metode Clustering. Jurnal Pendidikan dan Teknologi Informasi, 13(2), 62–69.
Sari, D., & Pratama, A. (2020). Penerapan Algoritma K‑Means Clustering untuk Pengelompokan Nilai Akademik Siswa. Jurnal Teknik Informatika dan Sistem Informasi, 6(1), 34–40.
Wulandari, F., & Nugroho, D. (2020). Pemanfaatan RapidMiner dalam Analisis Data Akademik Siswa. Jurnal Sistem dan Teknologi Informasi, 8(2), 22–30.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Eko Andri Wibowo, Ririn Aryanti (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
Creative Commons Attribution 4.0 International (CC BY 4.0).